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The axisymmetric flow of liquid in a rigidly bounded annular container of 
height H ,  rotating with angular velocity i2 and subjected to a temperature 
difference AT between its vertical cylindrical perfectly conducting side walls, 
whose distance apart is L, is analysed in the boundary-layer approximation for 
small Ekman number v/2i22L2, with gaATHv/4Q2L2~ N 1. The heat transfer 
across the annulus is then convection-dominated, as is characteristic of the 
experimentally observed ‘upper symmetric regime ’. The Prandtl number 
V / K  is assumed large, and H is restricted to be less than about 2L. The side wall 
boundary-layer equations are the same as in (non-rotating) convection in a 
rectangular cavity. The horizontal boundary layers are Ekman layers and the 
four boundary layers, together with certain spatial averages in the interior, are 
determined independently of the interior flow details. The determination of the 
latter comprises a ‘secondary’ problem in which viscosity and heat conduction 
are important throughout the interior; the meridional streamlines are not 
necessarily parallel to the isotherms. The secondary problem is discussed quali- 
tatively but not solved. The theory agrees fairly well with an available numerical 
experiment in the upper symmetric regime, for V / K  7, after finite-Ekman- 
number effects such as finite boundary-layer thickness are allowed for heuris- 
tically. 

1. Introduction 
When a temperature difference AT is imposed between the perfectly conduct- 

ing inner and outer vertical cylindrical boundaries of a rotating liquid-filled 
annulus (see figure 1 below) several different types of flow can result, as is well 
known (Hide 1958; Pultz et al. 1959; Fowlis & Hide 1965; Lambert & Snyder 
1966). For certain regions in the space of governing parameters, the flow can be 
steady and axisymmetric ; in other regions there appear non-axisymmetric 
regular or irregular wave-like motions. There has been a great deal of experi- 
mental and theoretical work on these flows, largely connected with the fact that 
they have been found to be relevant to the problem of understanding the general 
circulations of planetary atmospheres such as the Earth’s. 
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It is the non-axisymmetric flows that are most closely relevant to the dynamics 
of the atmosphere (Riehl & Fultz 1957). However, the axisymmetric flow, with 
which this paper is concerned, is extremely interesting in its own right as a fluid- 
dynamical problem and to a limited extent is analogous to the tropical trade- 
wind or Hadley circulation. More important, perhaps, is the fact that its study 
would seem to be an essential preliminary to the more difficult task of under- 
standing the non-axisymmetric phenomena in detail. 

The problem of describing theoretically even the axisymmetric flow is not 
straightforward; the simultaneous importance of buoyancy, Coriolis and 
viscous forces, coupled with advection and diffusion of heat, means that the 
mathematical problem is still cc priori a formidable one. Early attempts at  a 
theory appropriate to this general type of flow (see, for example, Davies 1953; 
Kuo 1954; Lorenz 1953) made use of assumptions that were unrealistic in one 
way or another, such as neglect of side boundary conditions. An approach in- 
volving assumptions of a rather different kind, concerning the specific form of 
the temperature field, for instance, has been used more recently by Hide (1967). 

The first realistic theory of steady axisymmetric flow in the annulus was the 
boundary-layer theory given by Robinson (1959) for a rigidly bounded annulus 
of square cross-section and negligible curvature, and valid when the rate of 
rotation SZ is so large, relative to the imposed horizontal temperature contrast 
AT, that the heat transfer is conduction-dominated throughout the fluid. Under 
these circumstances the mathematical problem can be linearized (although it is 
still intricate) through the use of an expansion based on a small parameter 
involving ATlSZ2. Robinson’s original analysis is in error in certain respects, and 
has recently been corrected by Hunter (1967)) who also gives new results con- 
cerning the modification of the flow fields by heat convection, and extends the 
analysis to the case of a free top surface. 

As far as the writer is aware no comparable analytical theory, in which all the 
boundary conditions are satisfied and the approximation scheme is self-consistent 
and realistic, has previously been given for the contrasting situation in which 
AT/@ is relatively large and the heat transfer across the annulus is convection- 
dominated. The present work provides such a theory, based also on boundary- 
layer methods, for the rigidly bounded case. Although there is no linearizing 
expansion for the whole flow, a set of self-consistent and realistic approximations 
has been found that leads to a greatly simplified mathematical problem. 

Within its region of validity, this theory forms a useful complement to the 
several recent numerical studies of the axisymmetric flow (Piacsek 1966; Quon 
1967; Williams 1967). It is thought to provide a particularly apt example of how 
the process of finding a suitable approximate solution to a complicated fluid- 
dynamical problem can lead to a great deal of physical insight into the problem, 
particularly with regard to the way in which different regions in the flow, not 
necessarily adjacent to one another, interact to determine the flow as a whole. 
This kind of understanding would be difficult to achieve by simply examining 
the appropriate numerical solutions. On the other hand, the strength of the 
numerical approach lies in its minimal dependence on a priori assumptions, and 
the ideas upon which the present theory is based originally came from the 
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opportunity afforded the writer by Dr C. Quon to study and discuss some of 
the latter’s recent numerical results. 

A formal definition of the region of validity is postponed until $ 3  to allow the 
basic equations and parameters to be set up first in $ 2 .  The region of validity will 
be called the ‘ convective regime ’ to distinguish it from the conductive regime 
analysed by Robinson and Hunter. 

Following $ $ 2  and 3, we proceed to the details of the scale analysis in $4, 
and obtain a set of approximations valid in the limit of small boundary-layer 
thickness. In  $95 and 6 the individual boundary-layer solutions are obtained, 
and $ 7  completes the formulation of the ‘primary problem’, which is a closed 
problem that determines the boundary-layer flows together with integral pro- 
perties of the interior such as the horizontally averaged zonal velocity. The 
primary problem can be thought of as expressing the main balances of the flow 
considered as a whole. The ‘secondary problem’ of subsequently determining the 
interior flow details is discussed qualitatively in $ 8. In  $9  results are presented to 
illustrate the dependence of the primary problem upon its two determining 
parameters, and a preliminary comparison with numerical experiment is carried 
out. $ 10 summarizes the theory, and in $ 11 we give some concluding remarks 
and speculations. 

Before going further, we draw attention to the fact that the approximation 
scheme upon which the theory is based has important features in common with 
that developed independently by Barcilon & Pedlosky (1967) in their linear 
theory of slow steady mechanically or thermally driven motions of a contained 
strongly stratified rotating fluid (the first of their three recent papers). Notable 
similarities are the thickness scale and essential physics of the side boundary 
layers, and the fact that viscosity and heat conduction are significant throughout 
the interior. The principal difference is that the present problem is fully non- 
linear, through both the horizontal and the vertical convection terms in the 
heat equation. The success of the present treatment stems largely from the fact 
that the greater part of the non-linearity is relegated to the secondary problem, 
and thus plays only a subsidiary role in the analysis and, by implication, in the 
physics of the flow. 

2. Basic equations and parameters 
We consider axisymmetric steady convection in an annulus of liquid rotating 

about its axis with angular velocity i2 as shown in figure 1, with a temperature 
difference AT imposed between the perfectly conducting inner and outer cylin- 
drical side walls. The horizontal boundaries are thermally insulating, and all 
four bounding surfaces are rigid. 

The following assumptions defining a ‘Boussinesq liquid’ will be made at the 
outset: that density variations are negligible except in the buoyancy term, and 
that the coefficients v, K ,  a of viscosity, heat diffusivity and thermal expansion 
can be taken as constants (and that frictional heating is negligible). We shall 
also take the centrifugal acceleration to be negligible compared with gravity : 
WR,/g < 1, where R, is the outer radius of the annulus. This is realistic for most 
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of the laboratory experiments, and moreover can in principle be satisfied as 
accurately as desired by scaling up the geometry. (Of course the latter device 
also improves the accuracy of the Boussinesq approximation, by reducing the 
values of AT required and hence reducing variations in v.) 

The problem thus defined will be taken as the starting-point. We note that the 
corresponding time-dependent equations are those used in the numerical studies 
referred to in the last section. 

T+AT 

S 

I 
I 

FIGURE 1. Definition sketch. The ‘starting corners’ (s) and ‘departure corners’ ( d )  are 
named from the point of view of the side boundary layers. (The terminology is that of 
Eckert & Carlson 1961.) A typical streamline of the meridional velocity field is sketched, 
and the zonal velocity field is indicated by the arrows. 

The equations and boundary conditions will be written in the rotating frame 
of reference in terms of cylindrical polar co-ordinates ( r ,  0, x) as defined in figure 1, 
to which correspond the velocity components (u, v, w). The Boussinesq liquid is 
kinematically incompressible, so that a Stokes streamfunction Y may be used 
for the meridional velocities u, w. We adopt the convention 

so that the 8-component of vorticity is 

The equations of the problem may conveniently be taken as the 0-vorticity 
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equation together with the zonal momentum equation and the heat equation. 
These are 

2vv, 
gaTr+2Qv,+ -, ( % l a )  

r r 

-Y, vr+ - --Yrv,= v ( V%-- ;) --Y "," 27 
r ( ;): 

1 
- - (Y ,Tr- -Yr~)  = K V ~ T ,  

(2.lb) 

( 2 . 1 4  

a2 1 a a2  
v2 -+--+- 

ar2 T a r  az2' 

where 

and T is the temperature. 

The boundary conditions are 

( 2 . l d )  

v = Y = aY?/an = 0 on all the boundaries, 

T = a specified constant on each side wall, 

aT/an = 0 on each horizontal boundary, 

where a/& signifies a normal derivative. The imposed horizontal temperature 
difference is AT. For definiteness we shall consider the outer wall to be hotter 
than the inner one. 

The problem defined above contains the seven physical parameters gaAT, 
Q, v, K,  R,, R2 and PI (see figure 1). These involve dimensions of length and time 
only, and so the problem can be specified by five dimensionless parameters. A 
set such as the following is usually taken (we write L for R, -RJ: 

p = gaATH/4Q2L2 

E = v/2!2L2 (Ekman number), 

CT = V / K  (Prandtl number), 

(external thermal Rossby number), 

(aspect ratios). 
h = H / L  

P = RlIR, 

3. Region of validity 
Like the theory developed by Robinson and Hunter for the conductive regime, 

the present theory is based on boundary-layer analysis for small F .  The most 
important other parameter is pa (more precisely, ~cTA-Q;  however A, and p 
also, will be assumed to be of order unity as E +  0). In the theory of the conductive 
regime PCT is the small parameter of the linearizing expansion, and is assumed to 
be o(E*), whereas the formal condition on ~ C T  appropriate to the present theory is 
PCT N 1,  as E --f 0. As the scale analysis will show, this condition can be interpreted 
physically as saying that, while rotation is an important controlling influence in 
most parts of the flow, it is not strong enough to prevent a convectively domi- 
nated heat transfer across the annulus. 
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The Prandtl number CT will be assumed large; formally, (T 2 e-* as e+ 0. It 
will be found that this is not too serious a restriction on the applicability of the 
theory. In analogous non-rotating laminar convective flows, the implied neglect 
of the convective acceleration terms is a very good approximation for CT = 7 
(water) and even lower (Elder 1966; Gill 1966). The extent to which this may be 
true when rotation is present is not obvious, but i t  will be found still to be true in 
the side boundary layers, and the comparison with numerical experiment in 
9 9 will indicate that, although for a = 7 the approximation is not everywhere as 
good as in the side boundary layers, the errors are still not serious. This is fortu- 
nate, since the numerical values of /3.- for which the theory best describes the 
flow (these are found to be somewhat greater than 1)  happen to correspond, when 
a = 7, to the interesting transition region between the upper symmetric regime 
and the wave regime (Fowlis & Hide 1965; Barcilon 1964). 

Finally, it will be found that the aspect ratio h must be less than a certain 
critical value in the vicinity of 2 .  This somewhat unexpected restriction is due to 
the fact that if h is too large the secondary problem for the interior flow details 
is not well posed. In 6 11 a conjecture is given as to the way in which the character 
of the flow changes when h exceeds its critical value. 

4. The scale analysis 

to base the scale analysis. 
We start by summarizing the main assumptions upon which it is convenient 

(i) pa (= ‘ c H V )  is of order unity. 
4Q2L2 K 

(ii) The aspect ratios h = H/L and p = Rl/R2 are of order unity. 
(iii) There are single thickness scales 1 for the side and A for the top and 

bottom boundary layers. 
(iv) The side boundary layers are convective: heat convection is as important 

as conduction, and the temperature scale is AT. (It follows that the side boundary- 
layer equations must be non-linear.) 

(v) ‘Outside’ the boundary layers there is an interior flow characterized by 
the length scale L. (This scaling will turn out not to be uniformly valid in the 
neighbourhoods of the corners, although it will be valid at any fixed distance from 
them.) 

(vi) The interior meridional velocities u, w are not substantially greater than 
the side boundary-layer vertical velocity (in fact it will turn out that they are 
far smaller), and the temperature scale in the interior is AT. The slopes of the 
interior isotherms are of order unity. 

(vii) a( = Y / K )  & 1. 
In terms of the side boundary-layer thickness 4, the basic approximation to be 

made is to neglect PIL in comparison with unity. Symbols such as < , and various 
verbal expressions, are to be given the corresponding formal interpretations : 
for instance assumption (vii) means that a-l = 0(1/L) as t/L+O. The scale 
analysis is equivalent to taking the leading terms that arise in each flow region 
from a formal expansion procedure in powers of PIL (or of e&, as it turns out). 
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Before turning to details we summarize the key results. 
( a )  Coriolis forces, despite their importance elsewhere, may be neglected in the 

side boundary layers. The scale P is given by P4 = vKH/gadT. 
(b)  The top and bottom boundary layers may be taken as Ekman layers, and 

so R2 = v/2!2. Moreover, P - A( = E ~ L ) .  
(c )  The meridional velocities in the interior are so small as to be negligible in 

the boundary-layer analysis; the mass flux of the meridional circulation, and 
with it the overall heat flux, is carried predominantly in the boundary layers. 
Viscosity and heat conduction, as well as horizontal and vertical heat convection, 
are important throughout the interior. The ‘thermal wind equation’ holds in the 
interior. 

The side boundary layers 

Clearly Y may be replaced by the local ordinary streamfunction $ (u = $z, 

w = - $r) for each side wall boundary layer. With $ = Y / R ,  for the inner wall 
or ‘FIR2 for the outer wall, the equations (2.1) become, in the boundary-layer 
approximation, 

$zZrrr-$r$rrz= V$rrrr-gaT,+2 a+- vz, ( 4 . l a )  

(4 . lb)  

h ’ r -  $TT, = KTrr .  ( 4 . 1 ~ )  

Assumptions (iii) and (iv) applied to the heat equation (4.1 c )  lead directly to a 

( “TI 
$zvr-  $rvz = vvrr- 2 Q h  

(4.2) 
single scale for $, namely 

An immediate consequence is that the convective acceleration terms, which 
comprise the left-hand sides of the other two equations, are of order cr-1 times 
the viscous terms and may therefore be neglected, by assumption (vii). 

In (4.1 a )  the viscous torque v$r7rrr must be important in balancing the driving 
torque - gaTr. This balance may therefore be used to define I ,  so that 

$( = r - ’y )  N 

VKH 
gaAT 

14 = __ (4.3) 

We now show that the term 2( St + v / r )  v, in (4.1 a)  is negligible. This is a major 
simplification, since (4.1 a) and (4.1 c )  then form a closed system, being no longer 
coupled to (4 . lb) .  

To obtain the required estimate for v we note that, in contrast to the balance 
in the boundary layers, the vorticity balance in the interior is dominated by the 
Coriolis and buoyancy torques. That is, equation (2 . la)  may be replaced by 

(4.4) 
ga 
2Q vz = - T, in the interior, 

the so-called ‘thermal wind equation ’ familiar in geophysical fluid dynamics. 
(Using (4.2) and (4.3) one can verify that under assumptions (vi) and (vii) the 
convective acceleration and viscous terms in (2.1 a )  are respectively O(P/L)  and 
O(P/L)2 times gaT,, in the interior. The term 2vvz/r may be shown to be O(k‘/L) 
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times the Coriolis term ~ Q v , ,  because of the relation ,8 < 1 implied by assump- 
tions (i) and (vii). This establishes the formal validity of (4 .4);  to forestall possible 
confusion it is just as well to note here that, even though in practical applications 
to the upper symmetric regime the numerical value of p approaches unity, 
neglect of 2vv,/r against 2Qv, usually remains a good approximation because the 
factor AT/L2 in p overestimates r-IT,.) 

Returning now to the formal analysis of the boundary-layer equation (4.la), 
we see that, if v, is assumed not to be significantly greater in the boundary layer 
than in the interior, it  follows very simply that 2fiv,, as well as Svv,/r, is negligible 
against gaT,. For, as we move from the interior (where ~ Q v ,  = gaT,) into the 
boundary layer, the scale for T, goes up by an order of magnitude from AT/L 
to AT/[ while the scale for v, stays, at most, the same. 

Equations ( 4 . 1 ~ )  and ( 4 . 1 ~ )  are now the same as their equivalents in the 
analogous non-rotating problem considered recently by Gill ( 1966). In  dimen- 
sionless form, with the scales KHIe for @, AT for T ,  and H for z, they become 

(4 .5u)  

(4 .5c)  

where is a stretched radial co-ordinate with scale e. 
It may be verified that equation ( 4 . l b )  reduces, formally, to v" = 0,  which 

merely implies that to sufficient accuracy the zonal velocity has no side boundary 
layer of thickness t .  This might seem to suggest the possibility of a more compli- 
cated boundary-layer structure involving intermediate thickness scales such as 
(Id)&, contrary to assumption (iii). But consideration of the interior flow vindi- 
cates assumption (iii), since it will be found that the interior zonal velocity can 
itself satisfy the no-slip condition. Indeed, it appears that it must do so, since it 
can be argued directly that the alternative possibility of an outer boundary layer 
is remote in the present problem. In  brief this is because of the difficulty of 
reconciling a convectively dominated heat equation with the continuity equation 
and any reasonable configuration of the isotherms. 

The viscous-conductive nature of the interior 

Again invoking the formal relation @ <  1 and the thermal-wind scale 
v N gaAT€I/2QL, we find that if the horizontal scale is L the convective accelera- 
tion terms in (2.1 b)  must be negligible against the Coriolis term (no matter what 
the Y and z scales are). To put it another way, a balance between the Coriolis 
and convective acceleration terms would signify that fluid particles were accelera- 
ting freely under the Coriolis force; particles so accelerating would over a radial 
distance L acquire zonal velocities that would be associated (using symmetry) 
with values of v, too large to be compatible with the thermal-wind equation 
(4.4).  Therefore the steady-state interior zonal momentum balance must be 
viscous-Coriolis, which immediately puts a stringent restriction on the horizontal 
velocity 

(4 .6 )  
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Because /3u N 1 this is an order of magnitude smaller than the horizontal velocity 
scale K / e  characteristic of the side boundary layers. Note the important con- 
sequence that entrainment from the interior i s  negligible in the analysis of the side 
boundary layers, a direct result of the presence of rotation. 

The relation u = r - T Z  N K / L  applied to the heat equation (2.1 c )  shows at  once 
that in the interior the horizontal convection term, and therefore both convection 
terms, are of the order of the conduction term. Further, from assumption (vi) 
T, N T,, and therefore 

w - u, N K / L ,  in the interior. (4.7) 

We have thus arrived at  the interesting picture of an interior flow in which 
viscosity and heat conduction are important in the ‘inviscid’ limit E + O .  The 
interior equations are the full heat equation (2 . lc ) ,  a zonal momentum equation 
(2.16) in which only the right-hand side is retained, and the thermal wind 
equation (4.4). The associated mathematical problem will be discussed in $8, 
where it will be confirmed that v can satisfy the required side wall no-slip condi- 
tions, as is suggested by the ‘viscous’ nature of the zonal flow. 

The top and bottom boundary layers 

We know already that in (2.1 b)  only the viscous and Coriolis terms can be signi- 
ficant, by the remark made at  the beginning of the last subsection. (The assump- 
tion that the v scale is no greater than in the interior has been made.) The side 
boundary-layer volume flux KH/t cannot flow through the interior, by (4.7), 
and must therefore be carried in the horizontal boundary layers. Therefore 
r-lY N KH/e, and again using the assumption v 5 gaATHI2nL  we find from the 
viscous-Coriolis balance in (2.1 b) that the scale A must satisfy 

A l e  5 pah-1 ( 1) (4.8) 

and, consequently, that in ( 2 . 1 ~ )  the viscous term dominates every other term 
except 2Qvz. 

Therefore the horizontal boundary-layer equations may be taken as 

vr-lYz,,z + 2Qv, = 0, (4.9a) 

vvZz - 2Qr-lY2 = 0, 

r - l ( Y z ~ - Y T ~ )  = KG,, 
and it follows that A may be defined by 

A = ( v / 2 ~ ) 9 ,  = (pa)Q-+i ( e ) ,  

(4.9b) 

(4 .94  

(4.10) 

and that, in contrast to the situation near the side walls, 

v N &lr-VP”, -gaATH/ZQL, (4.11) 

using r-lY N K H / t  and /3u - h N 1. It is obvious that no further terms can be 
dropped from (4.9c), since all the relevant scales are of the same order as the 
analogous scales in the side boundary layers. 

The closed system (4.9a,b) describes the familiar Ekman layer, the heat 
equation ( 4 . 9 ~ )  posing a local forced-convection problem. We further note that, 
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like the side layers, the E k m a n  layers m a y  be taken as non-divergent, because of 
the smallness of the interior vertical velocity w - K / L  as compared to the formal 
scale K H / P L  for w in the Ekman layer. 

The analysis has depended crucially on assumption (i), Pcr N 1. This relation 
expresses among other things the fact that, although for given AT the rotation 
!J is strong enough to organize the flow near the horizontal boundaries into Ek- 
man layers, it is not strong enough to prevent these layers from carrying a 
convectively generated volume flux from the side boundary layers. (If the rota- 
tion is significantly stronger, so that pc < I, a slight modification of the above 
chain of reasoning shows that there is no apparent way in which a volume flux 
of order K H / t  per unit azimuthal distance can cross from one side wall to the 
other, in axisymmetric steady flow. It is for this reason, rather than because of 
changes in the local balances near the side walls, that when Pcr < 1 the side 
boundary layers cease to be convective even though an appropriate Rayleigh 
number may be large. Conduction then becomes an important overall heat 
transfer mechanism throughout the fluid.) 

5. The Ekman layers 
Under the rigid-surface boundary conditions v = Y = aY/an = 0, and the 

non-divergence condition derived above, the meridional volume flux per radian 
being constant and equal to Y, say, the solution of the system (4.9a, b )  for the 
bottom boundary layer is 

Y = YI(l - e-c(sin [+ cos [)>, ( 5 . l a )  

( 5 . l b )  

where 5 = ( X  + + H ) / J 2  A, A2 = v/Z!J. 

The solution for the top boundary is obtained if 5 is re-defined as (&H - z)/,/2 A 

These solutions show that, once Y, is specified, the zonal velocities at the top 
and the signs of u and v changed. 

and bottom of the interior are 

(5.3) 

Note that this implies that there is a discontinuity in the interior zonal 
velocity v a t  each corner, because of the no-slip condition on v a t  the sides. This 
is the reason for the non-uniformity of the scaling in the neighbourhoods of the 
corners. The presence of the discontinuity is however formally consistent, since 
orders of magnitude in equation (2.1 b )  are such that a fluid particle entering an 
Ekman layer from the adjoining departure-corner region can experience a 
zonal acceleration, under the Coriolis force, that is sufficient to give it the 
required zonal velocity of order r - lYI /A  by the time it has travelled a radial 
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distance of order P. This depends on the assumption i~ B 1 which implies, as 
required, that even in a corner region of length scale I the convective acceleration 
terms of equation (2 . lb)  are not significantly greater than the Coriolis term; the 
viscous terms do not dominate the Coriolis term either, being comparable as in 
the Ekman layer itself. 

6. The side boundary layers 
Focusing attention on the inner or cold wall, so that [ = ( r  - Rl)/P, we first 

integrate the dimensionless vorticity equation ( 4 . 5 ~ )  once to give the vertical 
momentum balance 

T(5,Z) - Tl(4 = && ( = -WE*). (6.1) 

To sufficient accuracy w"+O as [-+a; therefore the function of integration 
Tl is the interior temperature 'just outside' the boundary layer. It will be assumed 
that the vertical gradient Tu > 0. Note that z runs between 

Elimination of T between (6.1) and (4 .5~)  gives a single equation for @([ ,z ) :  
8. 

(6 .2~)  

Adopting the convention that the dimensionless cold and hot wall tempera- 
turesareOand1,wehaveu = w = T = Oatthewall([= O),andu,w,(T-T,)-+O 
as [+ 00 (see $4). These boundary conditions may be written in terms of + as 

as [+00, (6.2b) i 
@+const ( =  YI) 

@[ ' = O  = 0 1 at  [ = o ,  fic+o 
$*& = -T1(4 && +- O 

where YI has now been made dimensionless, using the scale R,KHIP. 
As in the Ekman-layer problem, the boundary conditions cannot all be im- 

posed independently. Just as solution of that problem yielded information 
about the interior zonal velocity (equation (5.3)), we might expect that the 
system (6.2), together with any conditions that need to be specified concerning 
the flow down into the boundary layer from the starting corner at z = +&, 
should imply something about the form of Tl(z). In  order to make this clearer 
we shall first consider a simplified problem, which contains the essential physics 
and, as will be found later, appears to approximate the full problem surprisingly 
well. The simplified problem is easily soluble, being the result of replacing 
( 6 . 2 ~ )  by the linearized equation 

(Note that the linearization is a valid approximation for large 5.) The solution of 
(6.3) that satisfies all the boundary conditions (62b) except the one involving 
Tl is @(c, z )  = Yl{l - e-T(siny + cosy)), ( 6 . 4 ~ )  

where r(t-74 = (TIZ)%/& (TI2 > 0.) 
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Application of the remaining boundary condition results in a first-order ordinary 
differential equation for TI, which upon integration yields the relation 

108 Y 
(xl - x ) ~  ’ T,(z) = ~ (6.4b) 

where x1 is a constant. 
The solution (6.4) contains the two constants Y, and x,, which as yet are 

arbitrary. It is natural to regard these as being determined by conditions at  the 
‘starting end’ x = Q, Y, being the volume flux of the inflow, and 2, then being 
determined by, say, the local temperature contrast TI(&) across the end of the 
boundary layer. These two integral conditions represent all the information 
that can or need be specified at z = 4. Diffusion down into the boundary layer 
of further starting-corner information, concerning the profile $([, &) for instance, 
is negligible in the linearized problem (rather as in the Ekman-layer problem). 

Now the f u l l  boundary-layer equation (6 .2a)  possesses an exact, self-similar 
solution which satisfies all the conditions (6.2b),  and which can also satisfy both 
of the above-mentioned integral conditions on the inflow at x = 4 (the values of 
Y, and T,(Q)). If further conditions were irrelevant to the full problem, as they 
are to the linearized problem, we could say immediately that this similarity 
solution is the required solution for the side boundary layer. 

But the additional, non-linear terms in equation (6.2a) involve a$/az, indicat- 
ing that more does need to be specified at  (say) z = 4. Thus the similarity solution 
is only one of a family of possibly relevant solutions, all of which satisfy (6.2b) 
together with the two integral conditions at x = Q, and we cannot determine 
which of these solutions is the correct one unless we have further information 
concerning the flow out of the starting corner. Fortunately, however, it  happens 
that, even though the similarity solution may not be the strictly correct solution, 
it can be expected to be close to it numerically. Heuristic justification for this 
assertion will be given below; for the moment it will be assumed to be true. We 
shall then have in the similarity solution a simple analytical description of the 
side boundary-layer flow, and we shall also have avoided the difficult corner- 
flow problem, without, it is provisionally assumed, incurring serious error. 

The similarity solution has the following form: 

where 

also B14 T,(z) = ~ 

(2, - z ) ~  ’ 

where B, and z1 are constants. Tl(z) has exactly the same functional form as in 
the approximate solution (6.4); note that B, = Y, /F(m) .  The temperature in the 
boundary layer is 

i- k = BP (1 i- F’”) , ( 6 . 6 ~ ~ )  
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and the dimensionless velocities (scales KIP ,  K H / ~ ~ )  are 

P is the universal function defined by 

(6.6b) 

( 6 . 6 ~ )  

(6 .7a)  

The system (6 .7 )  is easy to solve by iteration. Posing 

F = aF;+a2F;+a3FA+ ..., (6 .8a)  

where a is yet to be determined, we may satisfy (6.7 a)  and all the relevant boun- 
dary conditions of (6.7b) except the inhomogeneous one, at  each order in a, by 

1 Fi  = e-q sin 7, 

where now 

J .................................................................., 
0- 93 B, ( 

2,-2 
V ( ~ , Z )  = (2)'X = 0 .93X,  = -. 

These three terms give more than enough accuracy; imposing the remaining 
boundary condition F"' = - 1 at X = 0 gives a = 1-18/43.  Also 

F(W) = F'dX ,  = 0.36 (0*35,), 

TI = 0.36B1. (6.10) 

su 
so that 

We shall require later the value of 

Two terms are sufficient for evaluating the integrals. 
The rapidity of convergence of the series (6 .8)  is remarkable, and shows that 

under the conditions of the similarity solution the influence of the non-linear 
terms in ( 6 . 2 ~ )  is weak. It can be verified directly that the exact solution is very 
well approximated by (6.4), the solution to the linearized problem. The effect 
of the second and higher terms of (6.8) upon the shapes of the velocity profiles is 
almost imperceptible, and is only slightly more noticeable in the temperature 
profile, If a were set equal to l / J 3  instead of 1-18/43,  and the constant 0.36 in 
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(6.10) replaced by 108-$, = 0.31, and the higher terms of (6 .8)  ignored, the 
similarity solution would become identical with (6.4). The smallness of the non- 
linear effects is presumably connected with the strong constraint of zero entrain- 
ment. 

Some justification can now be given a posteriori for the assumption made 
earlier, that the similarity solution is close to the strictly correct solution corres- 
ponding to the actual inflow from the starting corner. We recall that it  is the 
non-linear terms in ( 6 . 2 ~ )  that involve the z-derivatives which allow diffusion 
along the boundary layer of starting-corner information more detailed than that 
represented by the values of Y, and TI($). Inasmuch as the influence of the non- 
linear terms is small, the effect of the additional information will be weak, even 
though not formally negligible as it is in the linearized problem. Thus, even if the 
additional information is specified incorrectly at  z = 4, so as to lead for instance 
to the similarity solution instead of to the strictly correct solution, the difference 

0 5  

l o  

-05 

I 

I I I I 
0 5 10 15 

E 
FIGURE 2. Isotherms and streamlines for the cold wall boundary-layer similarity solution 
(6.5) with z1 = 1.58, B14 = 0.93. The dashed lines indicate the first region of reverse flow; 
Ymx == (1 +e-“ )Y1 .  (This flow reversal and the superficially similar phenomenon found 
in the conductive-regime side boundary layers occur for quite different dynamical reasons.) 
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between the two solutions can be expected to be numerically small except in the 
vicinity of the starting corner. 

These remarks provide heuristic justification only, since it is possible, of 
course, that the inflow conditions could be so different from those corresponding 
t o  the similarity solution that the non-linear terms become more important than 
an estimate based on the similarity solution would suggest. Further investiga- 
tion, probably involving numerical solution of (6.2) and perhaps of the corner 
flow problem, would be required to settle this question and to provide a quanti- 
tative error estimate. In  the meantime it can be noted that the present ideas 
seem to be supported by the comparison with numerical experiment in $9. 

The similarity-solution isotherm and streamline patterns are illustrated in 
figure 2. It is worth remarking that the overshoot of the temperature past its 
interior value, indicated by the shape of the isotherms, is a characteristic feature 
of any side-wall boundary layer for which the principal dynamical balance is 
between buoyancy and viscous forces and for which w+O as 6+00. For w(6) 
must then have (at least) one point of inflexion, and the momentum balance (6.1) 
shows that T(6, z )  - Tl(z) must therefore change sign. In other words, the down- 
ward velocity of the heavy fluid near the cold wall cannot be brought smoothly 
back toward zero as we move toward the interior, unless there is an upward 
buoyancy force on the fluid a little further out from the wall. 

When the Prandtl number o is finite, a similarity solution is still possible, and 
may be used to estimate the effect on the side boundary layers of the neglected 
convective acceleration terms. For w = 7 this solution is found to be almost 
indistinguishable from the solution (6.5)) differences being typically less than 1 %. 
This suggests that, except near the corners, the side boundary layers will be 
among the places where finite-o effects are least noticeable. 

7. Formulation of the complete primary problem 
Equality of the boundary-layer volume fluxes has already been utilized 

implicitly; another relation connecting the four boundary layers with each other, 
this time directly through their relationship with the interior, is the thermal 
wind equation (4.4) integrated over the interior : 

where v(n(r), qb) (r )  are the top and bottom interior zonalvelocities, given in terms 
of YI by (5.3)) and Tl(z), T,(x) are the interior side temperatures near the cold 
and hot side walls. The latter are given in dimensionless form by (6.5)) (6. lo), and 
their analogues for the hot wall involving, say, the constants B, and z2( < - 4). 
That is, 

where 0.36B1 = 'Y,, 0.36B, = pY,. The aspect ratio p appears asymmetrically 
because of the way in which 'YI was made dimensionless in $6 ,  scale RIKHII. 
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Upon substitution for qt), qb), Tl and T, in the integrated thermal wind equation, 
making all variables dimensionless, we obtain 

Y,, = 0.36B1 = 0*36B2 p-l, 

where 

and 

(7.3) 

(7.4) 

Now (7.2) gives two relations connecting B,, B,, z1 and z2.  We still need to make 
some statement about the side boundary-layer starting-end temperature con- 
trasts Tl(B) and 1 - T2( - *), which are clearly connected via the corresponding 
Ekman layers with temperatures in the opposite departure corners. This will 
lead to the two further relations required. Although a strict derivation of these 
relations would involve solution of the Ekman-layer forced convection problem, 
it will turn out that a detailed analysis can be avoided at the cost of introducing 
small errors only, in the following way. 

Consider the boundary-layer heat equation (4 .9~) .  The velocity field is given 
by (5.1), and consequently the heat equation reduces to uT, = KT,,; note that ru 
is a function of z only. The boundaries are insulators, and to sufficient accuracy 
there is no conductive heat exchange with the interior. We may therefore derive 
the following integral relations for, say, the bottom Ekman layer: 

IrruTdz = constant, = T rudz say, -1: 
and ru(T - F ) 2 d z  = - 2 ~ r  

where z-+m implies the inner or boundary-layer limit. Thus with respect to ru 
considered as a weighting function, the cross-boundary-layer temperature 
distribution has constant mean F and decreasing variance as we move 'down- 
stream'. In  using these concepts we are treating ru as if it  were one-signed; thus 
we suppose that the regions of small negative values of ru outside the main part 
of the boundary layer are not of qualitative importance in the forced convection 
problem. 

Now figure 3a shows the temperature profile near the lower end of the cold 
wall layer. If the flow round the departure corner is smooth, the temperature 
profile at  the beginning of the Ekman layer must be qualitatively as shown in 
figure 3b (convection dominates conduction in the corner), so that the fluid is 
coldest next to the lower boundary. If we now move along the Ekman layer 
toward the hot wall, the temperature mean stays constant and the variance 
decreases, as was shown, and it is presumed that the only reasonable way in 
which this can happen is for the fluid to become warmer next to the boundary 
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and colder in the outer part of the layer. That is, the horizontal temperature 
gradient aq,,/ar just above the Ekman layer is negutive. On the other hand, this 
gradient can be expected to be weak (LaT(,)/ar numerically much smaller than 
AT), since the cold wall boundary-layer fluid has given up much of its heat by 
the time it reaches the departure corner, so that the profiles in figures 3a and b 
involve only a rather small overall temperature difference. Furthermore, only a 
certain fraction of this will be felt by the outer parts of the Ekman layer. 

1=- 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 

FIGURE 3. Temperature and velocity profiles near the cold wall departure corner (see text). 

This suggests that it would be a good approximation merely to set aT,,/ar = 0, 
i.e. to assert that the bottom of the interior is isothermal. (This approximation 
may well be even better in practice than in the limit e+O. In  the numerical 
experiment referred to in 3 9, finite-€ effects render aT(,,/ar slightly positive; see 
figure 7 b below.) The same arguments apply to the top Ekman layer. 

We postulate, then, that the top and bottom of the interior are isothermal. We 
then have Tl(&) = T2(+) ( =  T(t) say) and T2( - &) = TI( - 3) (= T(,)). Thus, 
from (7.1), 

- 1. Bl4 +--. B2 - 

(zl + i)3 ( - Q - x2)3  

Together with (7.2) these are sufficient to determine all the unknowns in terms 
of the two external parameters 7 and p, and with them the boundary-layer solu- 

41 Fluid Mech. 32 
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tions, and the horizontally averaged interior zonal velocity V which in dimension- 
less form, scale KH/Ph, is 

I]. (7.7) 
1 

- :BP( - 

It will be useful also to derive an expression for the total Nusselt number or 
dimensionless heat transfer. This should not be calculated by integrating the 
local Nusselt number of the similarity solution, since an important contribution 
from the thermally active starting corner would then be ignored, but on the 
other hand we may calculate Nu from the difference between the convective 
heat fluxes a t  the departure-corner ends of the two side boundary layers. (The 
heat flux entering each Ekman layer is the same as that which leaves it, to 
sufficient accuracy.) A t  the bottom of the cold wall boundary layer, remembering 
the convention T = 0 on the cold wall, we may write the outgoing convective 
temperature flux per radian as R,KHAT/P times the dimensionless quantity 

using (6.5), etc. If there were no convection, the purely conductive temperature 
flux per radian would be R,KHAT x p / L .  Subtracting (7.8) from its analogue for 
the top of the hot wall boundary layer, and dividing by pBIL, we obtain the 
Nusselt number as 

Notice that Nu cc ATk, if Q is made oc AT4 so that r is fixed. The dependence of 
Nu on 7, and thus for instance on AT for fixed Q,  is clearly more complicated 
(cf. Bowden & Eden 1965, p. 187a; Williams 1967, p. 1726). 

8. The interior flow 
Before going further we shall briefly discuss, without solving, the secondary 

problem of determining the details of the interior flow. Numerical solution is 
presumably feasible, but would be unlikely to lead to new insight. 

The interior equations were found in $4 to be 

gaT,- ~ Q v ,  = 0, (4.4), (8 . ln)  

(8.lb) 

icrV2T +- T,Y,- T r y ,  = 0, (2.161, (8.1~) 
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where V2 is the cylindrical Laplacian as in (2.1). The boundary conditions are 
determined by the primary problem. They are, in dimensional form, 

v = O(:.T, = 0 ) ,  T = T , ( x )  a t  r = Ri (i = 1,2),)  

recalling (5.3), (7.1), the remarks preceding (7.5), and those following ( 4 . 5 ~ ) .  
A point of interest is that there are no boundary conditions on Y. This expresses 
the fact that fluid can enter or leave the boundary layers at  the very small velocity 
characteristic of the interior, without in the first approximation affecting the 
main balances of the flow. 

It can be argued (McIntyre 1967, p. 58) that the gross features of the interior 
'I", v and T fields are somewhat as sketched in figure 4. The corner singularity is 
the reason for the non-uniform validity of the scaling near the corners. The 
formally valid approximate condition of no entrainment into the side boundary 
layers becomes, for any fixed value of 8, increasingly less well satisfied as the 

+ 
I 090 

FIGURE 4. Contour diagrams of plausible interior Y, w and T fields. The inner or cold wall 
r = R, is on the left. The 'boundary' temperatures in ( c )  correspond to the case p = 0.62, 
7 = 1.86 (see $9), but otherwise the diagrams are schematic. The zonal velocity w takes 
its extreme values a t  the upper and lower inner corners, and is discontinuous a t  all four 
corners. The meridional velocity probably goes infinite in each corner. Note that a con- 
sequence of the conditions T = To,, To, a t  z = f 3H is that w, = 0 a t  z = & i H .  

corner is approached. In  cases of practical interest, this is thought to be a greater 
source of error in the side boundary-layer solutions than the neglect of conditions 
within the starting corner discussed in $6. 

It is not immediately obvious whether or not (8.1) can be a well-posed boundary- 
value problem. However, if the equations are rewritten as a set of four first- 
order equations in the dependent variables aT/ar, aT/az, a(rv)/ar, 'P', there are 
two independent conditions on each boundary and it can be shown (Courant & 
Hilbert 1962, p. 171) that the system is elliptic at  a given point provided 

h < T-~X-~C-B; (8 .2)  

G = HT,/AT is the dimensionless vertical temperature gradient and 
41-2 
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S = ILT,/HT,J is a scaled slope of the isotherm through the given point. This 
ellipticity criterion depends on the unknown solution of (8.1) because of the non- 
linearity of the system. 

It is only the presence of the horizontal convection term - Trys  in (8.1 c) that 
prevents the system from being elliptic when A is large. This suggests that, for 
tall annuli, convection might dominate conduction in at least part of the interior, 
the streamlines there lying along the isotherms. As in the non-rotating analogue 
(Gill 1966), information would then be carried through the interior from one side 
boundary layer to the other and would have to be accounted for in the boundary- 
layer analysis itself, precluding a breakdown into primary and secondary 
problems. 

In  the next section we shall make estimates of the right-hand side of (8.2), 
based on the assumption of plausible smoothly varying temperature fields such 
as that suggested in figure 4c. We shall thus ignore, as has already been tacitly 
done in the discussion that led to (7.5) and (7.6), the detailed structure that must 
actually be present near the corners because of the weak corner singularities. 
(In fact (8.2) is probably violated near the corners, for any A, but this local ill- 
posedness is thought not to be of great importance in practice. Although as 
e+ 0 one might expect eventually to see, in theory, some change in the character 
of the interior flow very near each corner, it  is believed that the values of €4 
and r1 involved would be too small to be of practical interest. But if the 
interior problem (8.1) were being solved numerically, some ad hoc smoothing of 
the boundary condition on w might be necessary.) 

It seems relevant to note that (8.2) can be shown also to represent a criterion 
for dynamical stability to infinitesimal axisymmetric disturbances. It is not the 
same as the classical inviscid criterion of Solberg (see Ooyama 1966); the in- 
stability associated with violation of (8.2) represents a viscosity-caused desta- 
bilization, for large Prandtl number, of a flow which is stable by the classical 
criterion. 

9. Numerical results 

Dependence o n  r and p 

The primary problem has been reduced to solving the algebraic equations (7.2), 
(7.5) and (7.6), given the values of r and p. The dependence of the interior side 
temperature distributions (7.1) on r and p is illustrated in figure 5, in which the 
left- and right-hand diagrams give the positions of the interior isotherms at  
r = R, and R, respectively. In figure 4 c  above, the temperature distributions 
at the edges of the interior correspond to the case marked by the dotted lines 
(r = 1.86, p = 0.62) in figure 5. 

The main feature of the r-dependence, illustrated by the top half of figure 5, 
is that the average slope of each interior isotherm increases as T becomes smaller, 
i.e. as i2 is increased or AT decreased. We can look at  this effect in the following 
way. An increase in i2 tends to reduce the volume flux per radian (Y,) in the 
Ekman layers, both because the Ekman layers become thinner and because, in 
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the interior, v, decreases for given T,. A corresponding diminution in the volume 
flux carried by the side boundary layers, whose thickness scale f‘ remains con- 
stant if AT is fixed, gives fluid particles in them more time in which to gain or 
lose heat over a given vertical distance. Thus vertical temperature gradients 
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P P 
FIGURE 5. Isotherm diagrams illustrating the dependence of the interior side temperature 
distributions on 7 (top) and on p (bottom). The left- and right-hand diagrams give res- 
pectively the inner (r = R,) and outer (r = R,) side temperature distributions. 

tend to become more concentrated near the starting corners, and the average 
slope of each interior isotherm must increase until a new balance is attained. 

When curvature is negligible (p = 1 ; see the lower pair of diagrams in figure a), 
the problem is ‘centro-symmetrical’ (Gill 1966, p. 518). The most obvious 
consequence of finite curvature (p < 1) is that the inner boundary layer has to 
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carry a greater volume flux per unit azimuthal distance than the outer one. Thus, 
for instance, the fluid in it does not come as near to acquiring the wall temperature 
as occurs in the outer boundary layer, so that any given isotherm will be found 
lower and lower down in the interior as the curvature increases ( p i ) .  (The 
opposite would occur if the heating were reversed.) Further, it can be seen why 
the concentration of the vertical temperature gradient near the starting corner 
is more marked for the outer wall. 

Figure 6 illustrates the dependence on r and p of TI, l"u/L ( K A T - ~ N u ) ,  
x1 and z2. (In connexion with the above, note that [zal < lzll .) 
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FIGURE 6. Illustrating the dependence of Y r ,  ( f /L)Nu, zl, - z2 ,  and A, on T (left-hand 
diagram) and on p (right-hand diagram). 

In order to obtain some idea of the maximum permissible value of A that would 
allow the interior problem to be well-posed (but see in this connexion the re- 
marks at  the end of § 8 ) )  we also plot in figure 6 a rough estimate A of the mini- 
mum value of the right-hand side of the ellipticity criterion (8.2). For definite- 
ness and for simplicity A is defined as the minimum value, over the interior, of 
r-2s-3G-8 as it would be if the interior isotherms were straight lines. Considera- 
tion of plausible isotherm fields such as the one shown in figure 4c suggests that 
this is an overestimate, but on the other hand it will appear below that finite-s 
effects work in the opposite direction. In  practice the graphs of A are probably 
as good a guide as any to the maximum permissible value of A. They are still 
only a rough guide, and could appropriately be summarized by simply saying 
that, as a provisional working rule, the theory can be expected to break down in 
practice if h is greater than a value in the neighbourhood of 2. (Therefore geo- 
metries as tall as those used by Bowden & Eden (1965) in their rigid-lid experi- 
ments ( A  2 3, 5) seem definitely outside the scope of the theory.) 
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Finite-s effects and comparison with numerical experiment 

Of the rigid-lid numerical results available at  present the best choice for com- 
parison, having the smallest value of E as well as a value of pc appropriate to the 
theoretical convective regime, is the case A 2 computed by Williams (1967), 
for which €4 = 0.0334, /3c = 5.15, c = 7.19, p = 0.716, h = 1.97 and p = 0.578 
(r = 0.86, ,u = 1-33).? A 40 x 60 mesh was used. Williams's results for Y, T and v 
are reproduced in figure 7.  

Although €4 = 0.0334 is more than sufficiently small for the flow to have a 
well-developed boundary-layer character, it  will be found that certain 0(&) 
errors in the theory are still not very small numerically and, moreover, tend to 
reinforce each other. On the other hand, some of these errors can be corrected for 
in a simple and intuitively reasonable way, as will be done in the comparison that 
follows. 

'3! (om3 sec-l) TIAT 

I . ..... .. . .... . . .. . . . . . . . . .. .. . . . . . - 
/ / 

\ v I ~ -  :(R,+PJ 

(numerical 
computation) 

v (cm sec-l) v (cm sec-1) 

FICVRE 7. Results of the numerical computation A 2 of Williams (1967), compared with 
theory; see text below. In the equal-interval contour diagrams (a) ,  ( b )  and (c) the inner or 
cold wall (r  = R,) is on the left. The vertical scale is exaggerated, the true aspect ratio 
h = €€/L being 1.97. I n  (d),  the theoretical curves (thin unbroken lines) give the interior 
and boundary-layer zonal velocities horizontally averaged over the inner width L, (shown 
in (c)), whereas the other curve is the numerical result for v at  r = +(R,+R,) (Williams, 
unpublished). The theoretical curve would be slightly further away from a numerical 
V ( z )  curve; the theoretical maximum and minimum values of V at top and bottom are 
1.2, times the corresponding numerical values. The units are c.g.s., appropriate to 
H = 5 cm (R, = 3.48 cm, R, = 6.02 cm) and K = 1.42 x 
cm2 see-l) 

cm2 sec-1 (v = 1.008 x 

First, the effective size of the interior is diminished by the finite thickness of 
the boundary layers. In the derivation of (7 .2) ,  the thermal wind equation 
2Qv, = gaT, was taken to hold over the full annulus cross-section of width L, as is 

f Note added in proof. The value v = 7.19, and consequently the values of /3u, and T ,  are 
slightly in error; r should be 7-10. This makes no significant difference to the results below. 
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valid in the limit E + O .  But, for the case under consideration, the width L, of 
the region over which the thermal wind equation holds is only about gL. This can 
easily be shown from an estimate based on the theory, or can here be seen a t  
once from figure 8 (Williams 1967), which shows the vorticity balance at  z = 0 
in the numerical experiment. It is clear that we can remove a major source of 
inaccuracy by re-deriving (7.2) using the thermal wind equation integrated over 
an interior region of width L, only. The choice of L, should represent a compro- 
mise such that the thermal wind equation is reasonably well satisfied over the 
inner region, the latter being, nevertheless, sufficiently wide for the temperature 
distributions at  its sides to be still closely connected with the boundary layers. 
(The sides r = R1,, R,, of the inner region that we shall define below are indicated 
in figures 7 b and c, and in figure 8.) 

z = o  

c__ L,  __ 

1 - Viscous term 
! ._____. Convection term 
! .. -. -. - ,  Buoyancy term 

.,, .. .. , ...,.,. , Coriolis term 
I 

i 
! I 

I I 

R ,  R,, RII - R,, R2sR2 
r 

F I G ~ E  8. Significant terms in the vorticity equation ( 2 . 1 ~ )  at mid-height 
(z = 0) ,  after Williams (1967). 

We should also consider the inner region to have a reduced height H,, such 
that the thermal wind equation does not become too inaccurate near the top and 
bottom ends, which, nevertheless, extend far enough into the outer parts of the 
Ekman layers for the top and bottom isothermal conditions (7.5) and (7.6) to 
hold. It will be useful then to define 

P I  = (uKH,/gaAT)*, = P(H,/H)i, 

since the scale for x will be taken as HI in order that the top and bottom boun- 
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daries of the inner region, where the isothermal conditions are to be imposed, 
remain at  z = f Q. 

Purely for the sake of definiteness, we shall place these boundaries at the first 
theoretical Ekman-layer zeros of u (shown in figures 7 a ,  b, d by dotted lines), 
a choice which seems as appropriate as any. The value of HI is not as critical as 
the value of LI, because HI will appear only to the power $ and, in the present 
case, because H > L. The corresponding value of HI is 

(9-1) 
Note that the complete inner region that we shall use is that shown in figure 7 b. 
With regard to choosing the sides r = RiI, R,I and thence LI = R z I  - RiI, it  
can be verified from theoretical estimates that a rule adequate in most circum- 
stances (with 6 -h or smaller) is simply to take points $ of the way from the 
first theoretical viscous-torque zero to the second in each side boundary layer, 
at z = 0. That is (ignoring higher terms in (6.8) !) 

HI = H - 2  ~ 7 ~ 4 2  A. 

L,  = 4, - RlI, (9.2) 

where 

In the relations $ = Y/Rl ,  $ = Y / R 2  for the side boundary-layer ordinary 
streamfunctions, the relevant modified values of Ri are not the same as RiI, but 
should correspond to representative positions within the boundary layers where 
most of the mass transport and heat convection is taking place. Distances l& 
times further from the walls than the principal maxima of w at height x = 0 are 
taken as being reasonable. The distances of the maxima are almost exactly 
$7rtIlzi1/O-93Bi, so that for calculating the $'s the radii are taken as 

(9.3) 1 R,, = R, + 1 . 3 ( , 1 # % ,  
R2, = R2- 1.3ezl~,l/B~. 

Thus, also B, = p,B,, where pll. = RlP/R2,. 

It is simplest to take the scale for Y as R1,KHI/t,. The scale for z is HI. Then it 
can be shown that the modified primary problem, resulting from the use of (9.3) 
and from integration of the thermal wind equation over the inner region only, 
is still expressed by (7.2),  (7.5) and (7.6) provided p, r and ,u are replaced byp$, 

and 

A further correction that can legitimately be made for the purposes of the 
comparison, but which would be harder to estimate in the absence of the numeri- 
cal results, since it depends among other things on the details of w(r, z ) ,  is some 
allowance for the fact that the side boundary layers carry a greater volume flux 
per radian than do the Ekman layers. If q5 denotes a representative value of the 
ratio of side flux to Ekman flux, it is clear that applying this correction is equi- 
valent simply to multiplying the right-hand side of (7.2) by the factor $; YI is 
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then to be interpreted as the side flux. To estimate $ from figure 7a,  we must 
decide upon some value representative of the side volume fluxes, which vary 
considerably with height. We appeal to the fact that, as may easily be verified 
directly, the outer side boundary-layer temperature distribution can be fitted 
closely to that of the similarity solution if the flux of the similarity solution is in 
the neighbourhood of the actual maximum flux.7 We thus have a rationale for 
basing the correction factor $ on the maximum side flux, 

fi (1 + e-")-l x 0.155 em3 sec-l. 

(This is not the same as imposing the desired answers on the analysis; the 
actual flux values that will emerge from solution of the full corrected primary 
problem remain to be seen.) Inspection of figure 7u now suggests $fi 1.3, 
and a crude general rule for estimating $ is then 

(This assumes h not small, and is obtained by supposing that in the interior 
v(V%-w/r2) is approximately proportional to vw(,,/L2 a t  some radius r so that, 
by (8 . lb)  and (5.3), ru cc AYI/L2, whence $ - 1 cc r u H / Y ,  cc dh.) 

Summarizing, the above corrections can be made by simply replacing p r  in 
(7.2) by pIrIq5 and using B, = p@B,. Among the effects not allowed for are the 
influence of the mass exchange with the interior on the forms of the side boundary- 
layer solutions themselves (we have already indicated that for the outer boundary 
layer in the present case this is not serious provided that we estimate $ as above), 
and possible departures from the Ekman flux relation (5.3). 

For the zonal velocity, 7, p and Y, in (7.7) should be replaced by r,, p, and 
'I?,/$; the scale is KHI/eIh. In  the expression (7.9) for Nu, LIP should be replaced 
by LR,,,H,IR,HPI (p being unaltered); all that we can say about Y,, unfortu- 
nately, is that it  should be replaced not by Y,/$ but by some value between YI/$ 
and Y,, since some heat will be convected (and conducted) across the interior. 

Results 

We have H = 1-97L7 A = O-O334L, HI = 1.67L, P ,  = O-O299L, R, = 1.37L, 
R, = 2.37~5. The rules (9.1)-(9.5) together with (7.5), (7.6) and the modified 
versionof (7.2) lead to {RlrG., RiI, R21, R2@] = {1.43,1.60,2.13,2*31)L, LI = 0*53&, 
prG. = 0.62, p I r I $  = 1-30 x 1-55 x 1-3 = 2-6 (pu7 is merely 1-33 x 0.86 = 1-15!), 

When H = 5 ern and K = 1.42 x cm2 sec-l as in A 2, the theoretical side- 
boundary-layer maximum value of the Stokes streamfunction is very nearly 
(1 + e-")YP, x R,,,KHI/eI em3 sec-l, = 0-17, em3 sec-l, 10 yo higher than the 
maximum value 0.15, em3 sec-1 in the middle portions of the side boundary 
layers in figure 7u. The dotted lines in figure 7 a  mark the theoretical first zeros 
of w for the side and u for the horizontal boundary layers. In  figure 7 b  the 
dotted lines at  the sides mark, instead, the theoretical first zeros of aT/ar. 

t The appropriateness of something like the maximum, rather than an average, side 
flux is supported by a physical argument similar to that given in Gill (1966, p. 524). 
(Positive entrainment tends to reduce dTJdz  or dT,/dz, and vice versa.) 

Z, = 2.41, z2 = - 1.58, B t  = 6.3, B:= 0.93, YI = 0.57. 
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Also shown in figure 7 b are the theoretical positions of the isotherms a t  the 
sides of the interior, obtained from (7.1). (The theoretical temperatures at 
z = 4, i.e. on the horizontal dotted lines, are 0.90,0*25.) The discrepancy at the 
inner side represents a departure from the form of the similarity solution: there 
is no B,, x ,  such that the side temperature distribution is closely represented by 
B,4(x1- 2)-3. This appears to be due to entrainment and ejection (see footnote 
above) rather than to starting-corner effects (0 6); there is no indication that the 
discrepancy is associated particularly with the starting end of the boundary 
layer. Moreover, the outer side temperature distribution is well described by the 
theoretical expression, 1 - 0.93(2 + 1.58)-3, especially near the starting end, where 
there is less entrainment than for the inner wall. The theoretical outer-wall 
similarity solution is the hot-wall equivalent of the solution shown in figure 2 .  

In the zonal velocity diagram 7 c ,  the dotted lines indicate the theoretical 
first maximum of lvl in each Ekman layer. The thin curves in figure 7d  are the 
theoretical interior and boundary-layer zonal velocities horizontally averaged 
over L,; also shown is the numerical result for v at  r = i(R,+ R,) (Williams, 
unpublished). The curves are of course not quite comparable, and the agree- 
ment is slightly less good than a casual glance might suggest. The dimensionless 
theoretical values of E(t) and V(b) are kO.48, scale KHI/f'It?, corresponding to 
- + 0.45 cm sec-l when H = 5 em and K = 1.42 x em2 sec-l. These are about 
1-2, times the corresponding quantities in A 2 roughly estimated from figures 7 c, d, 
which is consistent with the discrepancy in the interior isotherm slopes. (It 
is of interest to note further thermal-wind correlations between figures 7 b and 
d.) The difference, evident in figure 7c, between the r-dependences of the top 
and bottom boundary layers indicates a departure from the Ekman solutions 
due to convective accelerations, a finite-cr effect. The influence of the 2vvz/r 
term seems to be noticeable also. 

Williams's value of Nu is 8.3. The two theoretical extremes, involving !PI/# 
and !PI,  are respectively 7.3, 9.4. 

The estimate A should be replaced by A,, involving r1; A, 3-7, to be com- 
pared with A,  = H I / L I +  3.1. The interior equations are certainly elliptic for 
the temperature field of the numerical experiment, although the tendency of the 
streamlines to lie along the isotherms could be interpreted as saying that the 
equations are on the point of ceasing to be elliptic and would not be so if h were 
much larger. 

10. Summary of the main features of the theory 
The boundary-layer approximation for small E has been used to analyse the 

convective regime pa - 1 (cf. the conductive regime pa- = o ( d ) )  of axisymmetric 
steady convection in a differentially heated rotating annulus, under the addi- 
tional assumption of large cr (2 ~ - 4 ) .  

Since pg2 1 the side boundary layers are convective, and drive the whole 
flow. They are described by the same approximate equations as in convection in a 
(non-rotating) rectangular slot at  high Rayleigh number, and have the same 
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single thickness scale (vKH/gaAT)t. The isotherms have the inflected shape 
characteristic of a stably stratified interior and a viscous-buoyancy dynamical 
balance. These side boundary layers are completely unlike those of the con- 
ductive regime, which are forced by the rest of the flow and in which the rotational 
coupling between Y and v is important. (The latter boundary layers are more 
nearly analogous to the present interior flow.) 

Solution of the side boundary-layer equations, under the rotationally 
imposed condition of no entrainment from the interior, leads to information 
about the interior vertical temperature distribution ' just outside' each boundary 
layer. These distributions are of the form given by (7.1) and are determinate if 
the (constant) boundary-layer meridional volume flux per radian Y, is specified, 
together with another condition such as the temperature contrast across the 
starting end of the boundary layer. The analysis ignores further details of the 
inflow from the starting corner, which is not strictly permissible, but it is argued 
that the resulting error is numerically small. 

The Ekman layers also are non-divergent, because of the combined effects of 
rotation and stratification in the interior, and must also carry the constant 
volume flux Y,. The interior zonal velocity just outside them is therefore 
f 2( Q/v)*YI / r  for the top and bottom respectively, away from the corner regions. 
This means that Y, is connected with the interior temperature field in another 
way, through the thermal wind equation ZQv, = gaT,. Upon integration over 
the whole of the interior, this equation relates vertical differences of zonal 
velocity, and thus Y,, to horizontal temperature differences. Therefore Y, is 
related in a second way to the interior temperature distributions just outside 
the side boundary layers, without reference to the details of the interior flow. 

These side temperature distributions, the top and bottom zonal velocities, and 
therefore, through the thermal wind equation, the horizontally averaged zonal 
velocity at each height x ,  are the interior quantities involved in the primary 
problem. 

Finally, the temperature contrast across the starting end of each side boundary 
layer is related via the corresponding Ekman layer to temperatures in the 
opposite departure corner. These two relations suffice to close the primary 
problem. It is argued that to a very good approximation the two relations can 
be expressed simply by the statement that the top and bottom of the interior 
region are isothermal. This is a simplification which, together with the neglect of 
starting-corner flow details in the side boundary-layer analysis, and the neglect 
of the interior corner-singularity effect referred to at  the end of 0 8, prevents the 
theory from being ' strictly valid' as 6 -+ 0. However, in practice the O( 1) errors so 
introduced seem a good deal smaller numerically than certain of the (formally 
negligible) O(&) errors, such as those due to side boundary-layer entrainment. 

The integral properties of the interior fields that are determined by solving 
the primary problem now become boundary conditions on the secondary problem 
of determining the interior flow details. Small meridional velocities, which 
are negligible in relation to the boundary layers, play an essential role in the 
interior. They are of order ev, - KIL, and are necessary, first, to provide a Coriolis 
force which can maintain the zonal velocity field against viscous retardation, and 
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second, to provide just enough heat convection to maintain the interior tem- 
perature field against conductive relaxation, and in such a way that the thermal 
wind equation is satisfied. 

The primary problem depends on the order-unity parameters r ,  = (@a)$ h-4, 
and p. The secondary problem depends on h also, and breaks down if h is 
greater than a critical value, roughly 2. 

The numerical accuracy of the theory at finite B can be greatly improved by 
making O ( d )  corrections based, for instance, on the simple rules (9.1)-(9.5), 
that make some allowance for obvious sources of error such as the reduction of 
the effective size of the interior due to finite boundary-layer thickness. 

11. Concluding remarks 
The regions in parameter space accessible to the ‘corrected’ theory only just 

overlap those that have been reached so far by the numerical method: the 
comparison in $9  shows discrepancies that are most sharply illustrated by the 
horizontally averaged interior zonal velocity, whose theoretical value is about 
1.27 times that of the numerical experiment. These remaining discrepancies 
appear to be largely attributable to errors such as the departure (due to entrain- 
ment from the interior) of the inner side boundary-layer temperature distribu- 
tion from that of the theoretical similarity solution. 

Comparison with a laboratory experiment at smaller E ( <  10-3) would be 
desirable, with h between 1 and 2, say. Unfortunately, it  is not appropriate 
to take very much larger than 7 in a laboratory experiment (although o = 15 
or 20 would be worth consideration), since the wave regime would then be en- 
countered for any reasonable value ofpcr and so of r. If a = 7 is chosen, the theory 
should predict the flow best for a geometry in which curvature effects are mini- 
mized (p as near 1 as practicable), and for as small a value of r as can be attained 
without transition to the wave regime occurring. These conditions will minimize 
finite-o effects in those parts of the flow where they tend to be most perceptible 
in the primary problem, namely near the corners and in the Ekman layers. The 
value of B should be considerably less than 1 x if possible. Finite-e corrections 
such as those given by the rules (9.1)-(9.5) should still be made. (Note that (9.5) 
is a particularly crude estimate, and may possibly warrant refinement.) 

Among the theoretical predictions suitable for testing in the laboratory are the 
vertical temperature distributions, given by (7.1),  just outside each side boun- 
dary layer (about 5tz1xiI/Bi from each side wall-see (9.2)), and the temperatures 
at  distances of about n2/2 e*L from the horizontal boundaries. The latter tem- 
peratures should be found to be approximately independent of r ,  away from 
the corners ( $ 7 ) .  The total Nusselt number could be measured and compared 
with (7.9); but note that it is not obvious how to interpret Yz in (7.9) for finite e. 
Good measurements of the zonal velocity peak (1 + e-3“/4/2/2) qt)(r) at distance 
trr.2 BJL below the lid might be feasible, perhaps using a photochemical 
dye method (Goldish et al. 1965). 

The breakdown of the theory for h greater than about 2 ( $ 5  8,9) raises questions 
as to the nature of the flow in a tall annulus such as Bowden & Eden’s (1965). 
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If the formal assumption h N 6-4 is made, a scaling can be obtained under which 
the heat equation is convection-dominated throughout the interior. The simpli- 
fying feature of a breakdown into primary and secondary problems is then lost 
($8). When h is large but fixed as e + 0 the situation is presumably even more 
complicated. What probably happens is that part of the interior becomes con- 
vection-dominated while the remainder still involves heat conduction, in a way 
similar to that indicated for the case of a free upper surface by the numerical 
results of Piacsek (1966) and Williams (1967). It would be interesting to carry out 
a rigid-lid numerical experiment for small 8 with h = 3, say, in order to see whether 
a tendency for the interior to split into subregions does indeed manifest itself. 
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